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Abstract—The present paper deals the possibility of obtaining 

stress-strain relation with a decreasing segment through considering 
two-component medium. The basic idea lies in the assumption that a 
crystalline structure consists of two lattices connected by nonlinear 
interaction force. This force depends on the relative displacement of 
the lattices. When the displacement reaches its critical value, the 
system passes to the unstable position leading to a complicated 
dynamics. In this article the problem of static loading of two-
component medium is considered. The problem is limited to one 
space dimension. The analytic solution obtained by applying the 
Galerkin procedure is compared with results of numerical 
calculations.  
 

I. INTRODUCTION 
recent papers on experimental study of  a high-speed 
deformation under a shock wave loading [1], [2]  it was 
found that inner structure can exert a serious impact on 
material, resulting in increasing such important 

characteristics such as yield stress and hardness. These 
changes indicate an important role of structural 
transformations, which are caused by a local loss of stability 
by crystalline lattice leading to appearance of inclusions.      
Obviously, the process of structural conversion make some 
contribution in overall deformation, but despite a large number 
of experimental data it is very difficult to estimate it. The 
influence of microstructure on material properties still remains 
unclear. Classical continuum mechanics doesn't take the 
microstructure into consideration. The relation between the 
conservation laws and the properties of material is established 
only by the constitutive law, and the possibility of structural 
transformations should be somehow reflected in it. For 
instance, in many works devoted to phase transitions in solids  
[3],[4] it is accepted that description of this process is based 
on a non-monotone stress-strain relation. In case of one-
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dimensional problem the constitutive curve is often presented 
with a piece-wise function including a decreasing segment that 
separates two stable phases A and B (see Fig.1).  
 

 
Fig. 1 Constitutive curve  

 
The presence of decreasing branch means that after reaching 
the critical value of deformation material can not  resist to 
external load, and after passing the unstable segment this 
ability is recovered, leading to modification of material 
properties [5],[6].  The solution of dynamic problems with 
such constitutive law requires the introduction of a new degree 
of freedom indicating the position of phase border [7]. 
Integrating mass and momentum balance equations through the 
border allows to obtain the additional jump conditions, which 
are necessary to determine the stress distribution. In the 
present paper we would like not to postulate the non-monotone 
stress-strain relation, but to obtain it as a result of solving a 
problem of static loading, which is widely used for 
determination of elastic properties[8].       

II. TWO-COMPONENT MEDIUM. BASIC EQUATIONS 
Let us consider the model of material with a complicated 

crystalline structure consisting of two lattices. Let kV  be the 
particle velocity of the component (k=1,2). Then the mass 
balance equations for each component   are given by 
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Functions 1mχ  and 2mχ  characterize the rate of mass 

production.  If the total density of material 1 2ρ ρ ρ= +  is 

preserved, then the equality 1 2m mχ χ= −  should be satisfied. 
Otherwise, the balance of mass won't be obeyed. The 
conventional form of mass balance equation  can be obtained 
by adding the equations (1) 
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velocity. The dynamic equation of the system has the form [9] 
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where σ  is the stress tensor and F is the mass density of 

external force.  Assuming that 1 2= +σ σ σ , it is convenient 
to rewrite  equation (3) in the form of two equations 
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where 1 1 2 2ρ ρ ρ= +F F F . Here the stress in each lattice is 

denoted as kσ  and Q signifies the interaction force between 

the components. The operator 
d
dt

 signifies taking the material 

derivative, i.e.  
d
dt t

∂
= + ⋅∇

∂ kV . 

 Equations (4) are the basic ones for two-component 
medium. They will be used for the further analysis, but for the 
sake of simplicity we need to make several assumptions. First 
of all, let us suppose that there is no mass  production (or 
destruction) and there are no external forces acting on the 
system. Also, we will consider only small deformations. Thus, 
material derivatives can be replaced by partial ones. Finally, 
we will limit the problem by only one dimension in space. 
Taking into account  all these assumptions, we can present 
equations (4) in the following form 
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where 0kρ  is density in the equilibrium. Beside dynamic 

equations, we also need to establish the relation between stress 
and displacement. If deformations in each component are 
small, we can assume the validity of Hooke's  Law. In this case 
the equations (5) are written as 

 
2 2

1 1
1 012 2

2 2
2 2

2 022 2

u uE Q
x t
u uE Q
x t

ρ

ρ

∂ ∂
− =

∂ ∂
∂ ∂

+ =
∂ ∂

   .                     (6) 

 
Here ku  denotes displacement of  the components and kE  

is Young's modulus. The form of expression for  interaction 
force depends on the properties of medium which have a 
dominant role in the investigated phenomena. The process  of 
conversion of crystalline structure during phase transition can  
be conceived by using a rheological model [10] depicted in 
Fig. 2. 

 

 
Fig. 2 Rheological Model  

 
Suppose that as a result of the longitudinal displacement of 

the chains with respect to each other, material points can 
occupy a new stable equilibrium position corresponding to 
another phase. Taking into account the periodic structure of 
the lattice,  the simplest expression for interaction force can be 
chosen as follows 

 
( ) sinQ z K zλ=  ,                           (7) 

 
where K  defines its maximum value. The relative 
displacement is denoted as 1 2z u u= −  and λ signifies  the 
reciprocal of the period in crystalline lattice. In essence, 
function z plays the role of a latent degree of freedom, which 
can't be recorded during experiment. It can be revealed only 
through its impact on the center of mass. Basing upon these 
considerations [11] it is convenient to rewrite equations (6) 
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with respect to the center of mass displacement 
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In these equations 1
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is the ratio of the first 

component's density to the total density of material. The 
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rigidity of the components. If z  is negligibly small, the 
problem reduces to the linear wave equation with respect to 
the center of mass.  
 

III.  KINEMATIC LOADING. STATEMENT OF THE PROBLEM 
   

   In the present paper we discuss the possibility of obtaining 
the constitutive relation with decreasing segment (see Fig. 1).   
For this purpose we consider a static loading of two-
component rod of length l , which is described by system of 
equations (8). It is obvious that the static problem reduces to 
one equation with respect to z  

 
 ( ) 0xxz Q zβ− = ,                               (9) 

 
which should be supplemented by the appropriate boundary 

conditions. Suppose that one of the butts of the rod is fixed 
and another one moves accordingly to the prescribed function 
of time 0 ( )U t . These conditions can be written down in the 
following form 
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 From system of equations (6) it is clearly seen that three 

boundary conditions are not enough to determine the solution. 
So, we need an additional assumption which allows us to find 
one more condition. Let us assume that the stress distribution 
among the components is proportional to their densities 
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The assumption (11) is a moot point, but at least it doesn't 

contradict to the postulate of stress summation. The equation 
(9) and  conditions (10) and (11) form a full problem of 
kinematic loading. Of course, all boundary conditions should 
be rewritten with respect to z . Our aim is to determine the 
relation between σ  and 0 ( )U t . After introducing 
dimensionless variables:  
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be presented in the form : 
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Here the following notation is used: 2 01 1 02r E Eρ ρ= − , 

Klγ β= , 0 01 02ρ ρ ρ= + . Eliminating P  from equations 
(12) one can obtain the problem with mixed-boundary 
conditions. Note that parameter r  corresponds to the 
difference between the sound velocities of the components. If 
dimensionless parameter lλ is small, the problem becomes a 
linear one. Its analytical solution is given by 
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where lγ γλ=  The relation (13) can be regarded as 

Hooke's law  with equivalent Young modulus equal to efE , 

which depends on parameters r  and γ .  If the sound 
velocities of the components are equal, we deal with  spring's 
parallel connection. The same situation happens,  if the force 
between the components becomes infinitely strong. The 

function 
tanh( )( )F γ

γ
γ
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
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

 tends to zero as the argument 

γ  goes to infinity. 
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IV. GALERKIN PROCEDURE. NUMERICAL SOLUTION. 
 
For nonlinear problem we apply the Galerkin method, taking 
for simplicity only one basic function ( )f x x=  and 
searching  solution in the form z Ax= . After multiplying   
equation (13) by ( )f x  and integrating it between the limits 

0x = and 1x = , we arrive at the following algebraic system 
of equations      
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where lAη λ= . Boundary conditions (12) are already taken 
into account.  The first equation of system (14) can be written 
as ( , )F A P =0, where F  is implicit function. Obtaining the  
stress-strain relation analogous to the one shown in Fig. 1 
requires that the derivative of stress with respect to the 
prescribed elongation of the rod equals to zero at critical 
points.  Between these points the derivative should be 
negative. Using the implicit function allows to present the last 
requirement in the following form: 
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At critical points the denominator is equal to zero. This 
condition can be brought to the form 
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The equation  (16)  has roots  only if the  inequality lη λ γ<   
is fulfilled. On the other hand, relation (15) leads us to another 
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. Thus, we have a strong 

constraint on the roots of  equation (16) 
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Although the gap is rather narrow, it is not very difficult to 
find the parameters, satisfying inequality (17). One of the 

examples is demonstrated in Fig. 3. The calculations are 
performed with the following parameters:  
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These parameters do not correspond to any real material. They 
were chosen arbitrarily to illustrate the solution. Dots in Fig. 3 
indicate the results of numerical calculation performed by 
using finite difference method with the same parameters.   
 

 
Fig. 3  Constitutive relation  

     
This method was used to verify the solution obtained by 
Galerkin procedure. Two different approaches correlate well 
with each other. 
 

V. CONCLUSION 
 
The present paper deals with the problem of structural 
conversions of material. We consider the model of two-
component medium which  implies introducing an additional 
degree of freedom and writing a separate equation for it.  We  
demonstrate that in one-dimensional case this approach allows 
to obtain a non-monotone stress-strain relation, which is 
widely used for description of  phase transitions in solids. One 
of the controversial points here is the form of expression for 
nonlinear force. It may depend on different factors and it is a 
complicated problem to pick out the most important ones. The 
boundary condition (8) also seems to be rather contentious. 
There are many doubts about the restriction (14). Does it have 
any physical sense or is it just a mathematical trick? We 
assume that  it is necessary to investigate dynamic equations 
(5) to answer this question.  Finally, it not clear yet whether it 
is possible to extend this approach for two and three-
dimensional problems.   
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